Abstract

In this paper, we combine the positive aspects of the gradient sampling (GS) and bundle methods, as the most efficient methods in nonsmooth optimization, to develop a robust method for solving unconstrained nonsmooth convex optimization problems. The main aim of the proposed method is to take advantage of both GS and bundle methods, meanwhile avoiding their drawbacks. At each iteration of this method, to find an efficient descent direction, the GS technique is utilized for constructing a local polyhedral model for the objective function. If necessary, via an iterative improvement process, this initial polyhedral model is improved by some techniques inspired by the bundle and GS methods. The convergence of the method is studied, which reveals that the global convergence property of our method is independent of the number of gradient evaluations required to establish and improve the initial polyhedral models. Thus, the presented method needs much fewer gradient evaluations in comparison to the original GS method. Furthermore, by means of numerical simulations, we show that the presented method provides promising results in comparison with GS methods, especially for large scale problems. Moreover, in contrast with some bundle methods, our method is not very sensitive to the accuracy of supplied gradients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.