Abstract

We propose a bundle method for minimizing nonsmooth convex functions that combines both the level and the proximal stabilizations. Most bundle algorithms use a cutting-plane model of the objective function to formulate a subproblem whose solution gives the next iterate. Proximal bundle methods employ the model in the objective function of the subproblem, while level methods put the model in the subproblem’s constraints. The proposed algorithm defines new iterates by solving a subproblem that employs the model in both the objective function and in the constraints. One advantage when compared to the proximal approach is that the level set constraint provides a certain Lagrange multiplier, which is used to update the proximal parameter in a novel manner. We also show that in the case of inexact function and subgradient evaluations, no additional procedure needs to be performed by our variant to deal with inexactness (as opposed to the proximal bundle methods that require special modifications). Numerical experiments on almost 1,000 instances of different types of problems are presented. Our experiments show that the doubly stabilized bundle method inherits useful features of the level and the proximal versions, and compares favorably to both of them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.