The Boussinesq problem describing indentation of a rigid punch of arbitrary shape into a deformable solid body is studied within the context of a linear viscoelastic model. Due to the presence of a non-local integral constraint prescribing the total contact force, the unilateral indentation problem is formulated in the general form as a quasi-variational inequality with unknown indentation depth, and the Lagrange multiplier approach is applied to establish its well-posedness. The linear viscoelastic model that is considered assumes that the linearized strain is expressed by a material response function of the stress involving a Volterra convolution operator, thus the constitutive relation is not invertible. Since viscoelastic indentation problems may not be solvable in general, under the assumption of monotonically non-increasing contact area, the solution for linear viscoelasticity is constructed using the convolution for an increment of solutions from linearized elasticity. For the axisymmetric indentation of the viscoelastic half-space by a cone, based on the Papkovich–Neuber representation and Fourier–Bessel transform, a closed form analytical solution is constructed, which describes indentation testing within the holding-unloading phase.