Abstract
Synthetic aperture radar (SAR) images are inherently degraded by the speckle noise due to the coherent imaging, which may affect the performance of subsequent image analysis task. To address this problem, a weighted sparse representation-based method is proposed in this article for SAR image despeckling. The homomorphic transformation is first adopted to convert multiplicative noise into additive one. Second, similar patches are grouped together to learn the adaptive dictionaries and sparse coefficients based on nonlocal self-similarity constraint. Moreover, weighted regularizations are adopted for coefficients to boost the performance. Finally, despeckling images are obtained via exponential transformation. Experimental results on synthetic and real-world SAR images demonstrate that our proposed method outperforms several state-of-the-art methods in terms of both quantitative measurements and visual quality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have