Abstract
The Boussinesq problem describing indentation of a rigid punch of arbitrary shape into a deformable solid body is studied within the context of a linear viscoelastic model. Due to the presence of a non-local integral constraint prescribing the total contact force, the unilateral indentation problem is formulated in the general form as a quasi-variational inequality with unknown indentation depth, and the Lagrange multiplier approach is applied to establish its well-posedness. The linear viscoelastic model that is considered assumes that the linearized strain is expressed by a material response function of the stress involving a Volterra convolution operator, thus the constitutive relation is not invertible. Since viscoelastic indentation problems may not be solvable in general, under the assumption of monotonically non-increasing contact area, the solution for linear viscoelasticity is constructed using the convolution for an increment of solutions from linearized elasticity. For the axisymmetric indentation of the viscoelastic half-space by a cone, based on the Papkovich–Neuber representation and Fourier–Bessel transform, a closed form analytical solution is constructed, which describes indentation testing within the holding-unloading phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.