In recent years, there is a trend of improving the performance and efficiency of all existing measuring instruments due to a leap in technology. Almost every industry uses a variety of technologies that apply temperature control. Temperature of a heated body can be estimated by measuring the parameters of its thermal radiation, which are electromagnetic waves of different lengths. Temperature measurement is necessary for comfortable automatic control and management of production processes. The use of non-contact means makes it possible to measure the temperature of, firstly, moving objects, secondly, objects in inaccessible places, thirdly, to avoid damage to the measuring instruments when controlling large temperatures. High speed, the possibility of measuring temperature without disconnecting the object from the technological process, ensuring personnel safety, temperature measurement up to 3000 °C – these are the advantages of non-contact temperature measurement method. To obtain reliable values when measuring thermophysical quantities it is necessary to know the processes occurring in interaction of the measuring device or sensor with the object of measurement. These processes affect the magnitude of the measurement error, that is, magnitude of the result deviation from the true value of the measured parameter. This paper describes the errors of non-contact temperature measurement of pyrometers, namely total radiation pyrometer, partial radiation pyrometer, spectral ratio pyrometer, as well as shows the results of comparative calculations between them. Expressions for the evaluation of methodical errors of total radiation, partial radiation and spectral ratio pyrometers are given, as well as the results of comparative calculations of errors are shown.
Read full abstract