Abstract

The freezing characteristics of supercooled water in a gas diffusion layer (GDL), which are the bases for the cold start-up of proton exchange membrane fuel cells (PEMFCs), were investigated. An experimental apparatus for noncontact temperature measurement and observation systems was developed. GDL and GDL with a microporous layer (MPL) were prepared, and freezing experiments using a water-containing GDL under various cooling rates were performed with variations in polytetrafluoroethylene (PTFE) content and water saturation. Furthermore, based on the experimental results, the freezing initiation probability was theoretically investigated to elucidate the freezing characteristics. Results showed that, with increasing supercooling of water in GDL, the freezing probability of water increased abruptly. The effect of saturation showed a different trend depending on PTFE addition. For the GDL without PTFE, the freezing initiations occurred at approximately 6 °C of supercooling degree, and the probability approached 1.0 at approximately 9.5–11.5 °C, with saturation dependency. In contrast, for both GDL and GDL + MPL containing PTFE, the initiation temperature characteristics were relatively similar, which were approximately 8–12 °C, regardless of the saturation and PTFE content. In these cases, the ice-nucleating activity of water in the GDL was possibly stronger than that in the MPL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call