Abstract. In this paper, We are interested in specific non-coercive issues concerning electromagnetic wave propagation in the presence of metals or particular metamaterials. We focus on some non-coercive problems which cannot be studied by a classical Lax-Milgram approach. We consider the sign-changing Poisson-type equations with the homogeneous Dirichlet boundary conditions in the circular configuration and in the three square configuration. We utilize a method called T-isomorphism, which allows the conversion of non-coercive problems into coercive ones, to examine specific Poisson-type equations with sign-changing parameters. We first use the classical method to transform the equations into the corresponding variational formulations, and then apply the T-isomorphism method to show the well-posedness of these variational formulations with some parameters. By applying appropriate isomorphisms, we can conclude the well-posedness of the related variational formulations with certain parameters, which constitute the main findings of this paper. After giving appropriate isomorphisms, we can deduce the well-posedness of the corresponding variational formulations with some parameters, which are our main results in this paper.
Read full abstract