Abstract
We use second-order asymptotic analysis to deal with the minimization problem of a noncoercive convex function in a reflexive Banach space. To that end, we first introduce the definition of a second-order asymptotic cone, and its respective function, based on previous results for the finite dimensional case. We provide necessary and sufficient conditions for the existence of solutions for noncoercive convex minimization problems. Examples for which our assumptions are easier to verify than other well-known results are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.