Abstract
ABSTRACT We use asymptotic analysis for dealing with quasiconvex optimization problems in reflexive Banach spaces. We study generalized asymptotic (recession) cones for nonconvex and nonclosed sets and its respective generalized asymptotic functions. We prove that the generalized asymptotic functions defined in previous works directly through closed formulae can also be generated from the generalized asymptotic cones. We establish three characterizations results for the nonemptiness and compactness of the solution set for noncoercive quasiconvex minimization problems using different asymptotic functions. Finally, we present a sufficient condition for the nonemptiness and boundedness of the solution set for quasiconvex pseudomonotone equilibrium problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.