Abstract

We study vector optimization problems with solid non-polyhedral convex ordering cones, without assuming any convexity or quasiconvexity assumption. We state a Weierstrass-type theorem and existence results for weak efficient solutions for coercive and noncoercive problems. Our approach is based on a new coercivity notion for vector-valued functions, two realizations of the Gerstewitz scalarization function, asymptotic analysis and a regularization of the objective function. We define new boundedness and lower semicontinuity properties for vector-valued functions and study their properties. These new tools rely heavily on the solidness of the ordering cone through the notion of colevel and level sets. As a consequence of this approach, we improve various existence results from the literature, since weaker assumptions are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.