Breast cancer (BC) is one of the most common cancers in women, and chemotherapy is usually used to overcome this cancer. To improve drug delivery to cancer sites and reduce their side effects, nanocarriers such as niosomes (NIOs) are used. Moreover, a combination of other therapeutic methods like photothermal therapy (PTT) can help to enhance the chemotherapy effect. The aim of this research is the design a nanocarrier that simultaneously delivers chemotherapy and PTT agents. To achieve this goal, NIOs containing paclitaxel (PTX) as a chemotherapeutic agent and spherical gold nanoparticles (AuNPs) coated with citrate, chitosan (CS), and polyamidoamine (PAMAM) as a PTT agent were synthesized by thin hydration methods. Their physicochemical properties were determined by dynamic light scattering, UV–Vis, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) analysis. Cellular uptake, cell cytotoxicity, hyperthermia, and apoptosis effects of the proposed system were investigated in the MCF-7 BC cell line. The cellular uptake of NIOs/AuNPs–PAMAM (99.21%) and NIOs/AuNPs–CS (98.93%) by MCF-7 cells was higher than that of NIOs/AuNPs (79.55%), demonstrating that surface charge plays a key role in the cellular uptake of NPs. The MTT assay showed the cell viability of 45.48% for NIOs/AuNPs/PTX, 34.24% for NIOs/AuNPs–CS/PTX, and 37.67% for NIOs/AuNPs–PAMAM/PTX after 48 h of treatment. However, the application of hyperthermia significantly decreased the viability of cells treated with NIOs/AuNPs/PTX (37.72%), NIOs/AuNPs–CS/PTX (10.49%), and NIOs/AuNPs–PAMAM/PTX (4.1%) after 48 h. The apoptosis rate was high in NIOs/AuNPs–PAMAM/PTX (53.24%) and NIOs/AuNPs–CS/PTX (55.4%) confirming the data from MTT. In conclusion, the result revealed that combined PTT with chemotherapy increased cell cytotoxicity effects against the MCF-7 cells, and the AuNPs with various coating agents affected cellular uptake and hyperthermia which can be considered for efficient BC therapy.
Read full abstract