Abstract

Nevirapine (NVP), used for the treatment of HIV/AIDS, exhibits unpredictable oral bioavailability, has a poor side effect profile and requires frequent dosing. Niosomes are novel drug delivery systems that have the potential to overcome these challenges. A thin layer hydration approach was used to produce niosomes and optimisation was undertaken using design of experiments (DoE) and response surface methodology (RSM) establish and identify parameters that may affect the manufacture of niosomes. The impact of cholesterol and surfactant content, hydration time and temperature on manufacture was investigated. Critical quality attributes (CQA) in respect of particle size (PS), entrapment efficiency (EE), polydispersity index (PDI) and the amount of NVP released at 48 hours was also assessed. The optimised niosome composition was identified and manufactured and the CQA characterised prior to placing the batch on stability for 12 weeks at 4±2 °C and 22±2 °C. The PS, PDI, EE and % NVP released at 48 h was 523.36±23.16 nm, 0.386±0.054, 96.8 % and 25.3 % for niosomes manufactured with Span® 20. Similarly, the parameters were 502.87±21.77 nm and 0.394±0.027, 98.0 % and 25.0 % for mean PS, PDI, EE and %NVP released at 48 h for Span® 80 niosomes. All characterisation was undertaken on the day of manufacture. In conclusion, a simple, cheap, rapid and precise method of manufacture of NVP niosomes was developed, validated and optimised using DoE and RSM and the product exhibited the target CQA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call