The Nickel-based catalysts have a good catalytic effect on the 5-hydroxymethylfurfural electrooxidation reaction (HMFOR), but limited by the conversion potential of Ni2+ /Ni3+ , 1.35V versus RHE, the HMF electrooxidation potential of nickel-based catalysts is generally greater than 1.35V versus RHE. Considering fluorine has the highest Pauling electronegativity and similar atomic radius of oxygen, the introduction of fluorine into the lattice of metal oxides might promote the adsorption of intermediate species, thus improving the catalytic performance. F is successfully doped into the lattice structure of NiCo2 O4 spinel oxide by the strategy of hydrothermal reaction and low-temperature fluorination. As is confirmed by in situ electrochemical impedance spectroscopy and Raman spectroscopy, the introduction of F weakens the interaction force of metal-oxygen covalent bonds of the asymmetric MT -O-MO backbone and improves the valence of Ni in tetrahedra structure, which makes it easier to be oxidized to higher valence active Ni3+ under the action of electric field and promotes the adsorption of OH- , while the decrease of Co valence enhances the adsorption of HMF with the catalyst. Combining the above reasons, F-NiCo2 O4 shows superb electrocatalytic performance with a potential of only 1.297V versus RHE at a current density of 20mA cm-2 , which is lower than the most catalyst.