Abstract

Epitaxial cathodes in lithium-ion microbatteries are ideal model systems to understand mass and charge transfer across interfaces, plus interphase degradation processes during cycling. Importantly, if grown at <450 °C, they also offer potential for complementary metal-oxide-semiconductor (CMOS) compatible microbatteries for the Internet of Things, flexible electronics, and MedTech devices. Currently, prominent epitaxial cathodes are grown at high temperatures (>600 °C), which imposes both manufacturing and scale-up challenges. Herein, we report structural and electrochemical studies of epitaxial LiMn2O4 (LMO) thin films grown on a new current collector material, NiCo2O4 (NCO). We achieve this at the low temperature of 360 °C, ∼200 °C lower than existing current collectors SrRuO3 and LaNiO3. Our films achieve a discharge capacity of >100 mAh g-1 for ∼6000 cycles with distinct LMO redox signatures, demonstrating long-term electrochemical stability of our NCO current collector. Hence, we show a route toward high-performance microbatteries for a range of miniaturized electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.