Abstract

Along with the rapid development and ever-deepening understanding of nanoscience and nanotechnology, nanomaterials hold promise to mimic the highly evolved biological exquisite nanostructures and sophisticated functions. Here, inspired by the ubiquitous antibacterial nanostructures on the wingsurfacesofsome insects, a NiCo2 O4 nanozyme with self-adaptive hierarchical nanostructure is developed that can capture bacteria of various morphotypes via the physico-mechanical interaction between the nanostructure and bacteria. Moreover, the developed biomimetic nanostructure further exhibits superior peroxidase-like catalytic activity, which can catalytically generate highly toxic reactive oxygen species that disrupt bacterial membranes and induce bacterial apoptosis. Therefore, the mechano-catalytic coupling property of this NiCo2 O4 nanozyme allows for an extensive and efficient antibacterial application, with no concerns of antimicrobial resistance. This work suggests a promising strategy for the rational design of advanced antibacterial materials by mimicking biological antibiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.