In this paper, an optimization of shielding structures with different geometries is established for the D-T neutron generator system by combining Back Propagation (BP) neural network and Analytic Hierarchy Process (AHP). The D-T neutron generator (Model NG-9) used in the system was developed independently by Northeast Normal University. After investigating the rule of shielding performance among spherical, cylindrical and cubic geometries, the spherical shield is selected for BP neural network prediction to determine the total dose rate through it. Information about spherical multilayer-shielding structures and properties calculated by MCNP code is used to train the neural network. The predicted result serves as a parameter of the evaluation function, which provides a comprehensive assessment of the dose rate penetrated the shield, the shielding mass, and the shielding volume. Together with AHP, the weight factors are determined for all the optimization objectives to construct the evaluation function. By comparing its values, the optimal shielding structures for spherical, cylindrical and cubic materials are found. Against MCNP simulated values, the total dose rates’ errors of the optimal shielding structures for the sphere, cylinder, and cube are 1.72 %, -4.94 %, and -5.17 %, respectively. This result demonstrates that the combination of BP neural network and AHP is more effective in addressing multi-objective optimization problems related to the design of radiation shielding for various geometries.
Read full abstract