Abstract

Neutron-induced gamma-ray emission and its detection using a pulsed neutron generator system is an established analytical technique for quantitative multi-element analysis. Traditional gamma-ray spectrometers used for this type of analysis are normally operated either in coincidence mode – for counting prompt gamma-rays following inelastic neutron scattering (INS) events when the neutron generator is ON, or in anti-coincidence mode – for counting prompt gamma-rays from thermal neutron capture (TNC) processes when the neutron generator is OFF. We have developed a digital gamma-ray spectrometer for concurrently measuring both the INS and TNC gamma-rays using a 14MeV pulsed neutron generator. The spectrometer separates the gamma-ray counts into two independent spectra together with two separate sets of counting statistics based on the external gate level. Because the TNC gamma-ray yields are time dependent, additional accuracy in analyzing the data can be obtained by acquiring multiple time-resolved gamma-ray spectra at finer time intervals than simply ON or OFF. For that purpose we are developing a multi-gating system that will allow gamma-ray spectra to be acquired concurrently in real time with up to 16 time slots. The conceptual system design is presented, especially focusing on considerations for tracking counting statistics in multiple time slots and on the placement of pulse heights into multiple spectra in real time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.