Accurate real-time monitoring of neutron beams and distinguishing between thermal, epithermal and fast neutron components in the presence of a photon background is crucial for the effectiveness of accelerator-based boron neutron capture therapy (AB-BNCT). In this work, we propose an innovative quadruple metal–oxide–semiconductor field-effect transistor (MOSFET) device for real-time, cost-effective beam quality control; one detector is kept uncovered while the other three are covered with either a B4C, cadmium and B4C or polyethylene converter.Individual MOSFET converter configurations were optimised via Monte Carlo simulations to maximise signal selectivity across neutron energy spectra. Results demonstrate the quad-MOSFET device’s efficacy in quantifying changes in neutron flux, underscoring its potential as a useful instrument in the AB-BNCT quality control process.
Read full abstract