Abstract
A scintillating fiber (Sci-Fi) detector for the middle neutron flux range was installed in KSTAR as part of a collaboration between the National Institute for Fusion Science and the Korea Institute of Fusion Energy. The detector could make relatively high-time-resolution measurements of secondary deuterium (D)-tritium (T) neutron fluxes to investigate the degradation of D-D-born triton confinement, which is crucial for demonstrating alpha particle confinement, particularly above 0.9 MA in KSTAR. The pulse-height spectrum of the Sci-Fi detector exhibited two peaks, the higher of which corresponded to D-T neutrons. A discrimination technique was applied to extract the D-T neutron signal, revealing the time evolution of the D-T neutron flux during relatively high plasma current discharges with a 50ms temporal resolution. Future research will involve investigating the causes of the degradation of the triton burnup ratio above 0.9 MA in KSTAR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.