Abstract

BackgroundActinium-225 is one of the most promising radionuclides for targeted alpha therapy. Its limited availability significantly restricts clinical trials and potential applications of 225Ac-based radiopharmaceuticals. MethodsIn this work, we examine the possibility of 225Ac production from the thermal neutron flux of a nuclear reactor. For this purpose, a target consisting of 1.4 mg of 226Ra(NO3)2 (T1/2 = 1600 years) and 115.5 mg of 90 % enriched, stable 157Gd2O3 was irradiated for 48 h in the Breazeale Nuclear Reactor with an average neutron flux of 1.7·1013 cm−2·s−1. Gadolinium-157 has one of the highest thermal neutron capture cross sections of 0.25 Mb, and its neutron capture results in emission of high-energy, prompt γ-photons. Emitted γ-photons interact with 226Ra to produce 225Ra according to the 226Ra(γ, n)225Ra reaction. Gadolinium debulking and separation of undesirable, co-produced 227Ac from 225Ra was achieved in one step by using 60 g of branched DGA resin. After 225Ac ingrowth from 225Ra (T1/2 = 14.8 d), 225Ac was extracted from the 226Ra and 225Ra fraction using 5 g of bDGA resin and then eluted using 5 mM HNO3. ResultsMeasured activity of 225Ac showed that 6(1) kBq or 0.16(3) μCi (1σ) of 225Ra was produced at the end of bombardment from 0.9 mg of 226Ra. ConclusionThe developed 225Ac separation is a waste-free process which can be used to obtain pure 225Ac in a nuclear reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.