We develop an approximate, analytical model for the velocity of defects in active nematics by combining recent results for the velocity of topological defects in nematic liquid crystals with the flow field generated from individual defects in active nematics. Importantly, our model takes into account the long-range interactions between defects that result from the flows they produce as well as the orientational coupling between defects inherent in nematics. Our work complements previous studies of active nematic defect motion by introducing a linear approximation that allows us to treat defect interactions as two-body interactions and incorporates the hydrodynamic screening length as a tuning parameter. We show that the model can analytically predict bound states between two +1/2 winding number defects, effective attraction between two -1/2 defects, and the scaling of a critical unbinding length between ±1/2 defects with activity. The model also gives predictions for the trajectories of defects, such as the scattering of +1/2 defects by -1/2 defects at a critical impact parameter that depends on activity. In the presence of circular confinement, the model predicts a braiding motion for three +1/2 defects that was recently seen in experiments, as well as stable and ergodic trajectories for four or more defects.
Read full abstract