Abstract

Active nematics represent a range of dense active matter systems which can engender spontaneous flows and self-propelled topological defects. Two-dimensional (2D) active nematic theory and simulation have been successful in explaining many quasi-2D experiments in which self-propelled +1/2 defects are observed to move along their symmetry axis. However, many active liquid crystals are essentially chiral nematic, but their twist mode becomes irrelevant under the 2D assumption. Here, we use theory and simulation to examine a three-dimensional active chiral nematic confined to a thin film, thus forming a quasi-2D system. We predict that the self-propelled +1/2 disclination in a curved thin film can break its mirror symmetry by moving circularly. Our prediction is confirmed by hydrodynamic simulations of thin spherical-shell and thin cylindrical-shell systems. In the spherical-shell confinement, the four emerged +1/2 disclinations exhibit rich dynamics as a function of activity and chirality. As such, we have proposed a new symmetry-breaking scenario in which self-propelled defects in quasi-2D active nematics can acquire an active angular velocity, greatly enriching their dynamics for finer control and emerging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call