Abstract

Geometric confinement and topological constraints present promising means of controlling active materials. By combining analytical arguments derived from the Born-Oppenheimer approximation with numerical simulations, we investigate the simultaneous impact of confinement together with curvature singularity by characterizing the dynamics of an active nematic on a cone. Here, the Born-Oppenheimer approximation means that textures can follow defect positions rapidly on the timescales of interest. Upon imposing strong anchoring boundary conditions at the base of a cone, we find a rich phase diagram of multidefect dynamics, including exotic periodic orbits of one or two +1/2 flank defects, depending on activity and nonquantized geometric charge at the cone apex. By characterizing the transitions between these ordered dynamical states, we present detailed understanding of (i) defect unbinding, (ii) defect absorption, and (iii) defect pair nucleation at the apex. Numerical simulations confirm theoretical predictions of not only the nature of the circular orbits but also defect unbinding from the apex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.