The significant purpose of present investigation of the behavior of a nanofluid's in magneto-hydrodynamics (MHD), mass transfer, Joule heating, and boundary layer transfer characteristics over an exponentially stretching sheet in a porous medium and thermal radiation effects. The article's goal is to look at the fluid flow and heat transmission characteristics from a sheet of hybrid nanoparticles. The partial differential equations (PDEs) that were derived for the mathematical model were converted using the proper similarity transformation into ordinary differential equations (ODEs). The hybrid nanofluid composed of 97 % of ethyl glycol (EG) and the volume concentration of Magnetite (Fe3O4) and Copper(Cu) are ranging from 0.5 % to 2.5 % both respectively. The effects of thermal radiation, stretching rate, Joule heating, porous medium permeability, and nanoparticle volume fraction on the flow and heat transmission properties are investigated by numerical simulations using the finite difference method (FDM). The analysis reveals that the inclusion of nanofluids enhance the thermal conductivity and enhance the heat transfer rate. Additionally, the influence of variable viscosity on the flow behavior and thermal characteristics are examined graphically. The effects of variable viscosity and thermal conductivity are examined, as it has significance in optimizing system under various thermal and magnetic effects. This study offers a pathway to develop more efficient thermal management solutions, by contributing to technological advancement and energy saving. The key findings of present study reveal that the temperature profile rises significantly due to Joule heating effects. The Nusselt number reveal an improvement of about 12 % when the volume fraction of nano particles is increased by 1–4 % indicating the enhancement in heat transfer efficiency. Similarly, the velocity profile was influenced by porous medium permeability as 11 % increase in porosity result a 18 % decrease in velocity profile.By using parametric research, the role of physical parameters in determining the local skin-friction coefficient, temperature, nanoparticle volume percentage, and longitudinal velocity profiles, local Nusselt number, and local Sherwood number are thoroughly examined. A graphic representation of the velocity, temperature, and concentration distribution findings is presented.