Abstract

A central goal in molecular electronics and optoelectronics is to translate tailorable molecular properties to larger materials and to the device level. Here, we present a method to fabricate molecularly cross-linked, self-assembled 2D nanoparticle sheets (X-NS). Our method extends a Langmuir approach of self-assembling gold nanoparticle (NP) arrays at an air-water interface by replacing the liquid sub-phase to an organic solvent to enable cross-linking with organic molecules, and then draining the sub-phase to deposit films. Remarkably, X-NS comprising conjugated oligophenylene dithiol cross-linkers (HS-(C6H4)n-SH, 1 ≤ n ≤ 3) exhibit increasing conductance with molecule length, ~6 orders of magnitude enhancement in UV-Vis extinction coefficients, and photoconductivity with molecule vs. NP contributions varying depending on the excitation wavelength. Finite difference time domain (FDTD) analyses and control measurements indicate that these effects can be modeled provided the local complex dielectric constant is strongly modified upon cross-linking. This suggests quantum hybridization at a molecule–band (q-MB) level. Given the vast number of molecules and nano-building blocks available, X-NS have potential to significantly increase the range of available 2D nanosheets and associated quantum properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.