A new approach for fabricating porous structures on silicon substrates and on polymer surfaces, using colloidal particle arrays with a polymer mask of a highly etch-resistant organometallic polymer, is demonstrated. Monolayers of silica particles, with diameters of 60 nm, 150 nm, 300 nm, or 500 nm, were deposited either on a silicon substrate or on a surface coated with polyethersulfone (PES), and the voids of the arrays were filled with poly(ferrocenylmethylphenylsilane) (PFMPS). Argon ion sputtering removed the excess PFMPS on the particles which enabled removal of the particles with HF. Further pattern transfer steps with reactive ion etching for different time intervals provided structures in silicon or in a PES layer. Free-standing PES membranes exhibiting regular arrays of circular holes with high porosity were fabricated by using cellulose acetate as a sacrificial layer. The pores obtained on silicon substrates after etching were used as molds for nanoimprint lithography (NIL). A combination of the techniques of nanosphere lithography (NSL) and NIL has resulted in 3D nanostructures with a hemispherical shape (inherited from the nanoparticles) which was obtained both in silicon and in PMMA.
Read full abstract