BackgroundCoronavirus disease 2019 (COVID-19), a global public health crisis, continues to pose challenges despite preventive measures. The daily rise in COVID-19 cases is concerning, and the testing process is both time-consuming and costly. While several models have been created to predict mortality in COVID-19 patients, only a few have shown sufficient accuracy. Machine learning algorithms offer a promising approach to data-driven prediction of clinical outcomes, surpassing traditional statistical modeling. Leveraging machine learning (ML) algorithms could potentially provide a solution for predicting mortality in hospitalized COVID-19 patients in Ethiopia. Therefore, the aim of this study is to develop and validate machine-learning models for accurately predicting mortality in COVID-19 hospitalized patients in Ethiopia.MethodsOur study involved analyzing electronic medical records of COVID-19 patients who were admitted to public hospitals in Ethiopia. Specifically, we developed seven different machine learning models to predict COVID-19 patient mortality. These models included J48 decision tree, random forest (RF), k-nearest neighborhood (k-NN), multi-layer perceptron (MLP), Naïve Bayes (NB), eXtreme gradient boosting (XGBoost), and logistic regression (LR). We then compared the performance of these models using data from a cohort of 696 patients through statistical analysis. To evaluate the effectiveness of the models, we utilized metrics derived from the confusion matrix such as sensitivity, specificity, precision, and receiver operating characteristic (ROC).ResultsThe study included a total of 696 patients, with a higher number of females (440 patients, accounting for 63.2%) compared to males. The median age of the participants was 35.0 years old, with an interquartile range of 18–79. After conducting different feature selection procedures, 23 features were examined, and identified as predictors of mortality, and it was determined that gender, Intensive care unit (ICU) admission, and alcohol drinking/addiction were the top three predictors of COVID-19 mortality. On the other hand, loss of smell, loss of taste, and hypertension were identified as the three lowest predictors of COVID-19 mortality. The experimental results revealed that the k-nearest neighbor (k-NN) algorithm outperformed than other machine learning algorithms, achieving an accuracy of 95.25%, sensitivity of 95.30%, precision of 92.7%, specificity of 93.30%, F1 score 93.98% and a receiver operating characteristic (ROC) score of 96.90%. These findings highlight the effectiveness of the k-NN algorithm in predicting COVID-19 outcomes based on the selected features.ConclusionOur study has developed an innovative model that utilizes hospital data to accurately predict the mortality risk of COVID-19 patients. The main objective of this model is to prioritize early treatment for high-risk patients and optimize strained healthcare systems during the ongoing pandemic. By integrating machine learning with comprehensive hospital databases, our model effectively classifies patients' mortality risk, enabling targeted medical interventions and improved resource management.Among the various methods tested, the K-nearest neighbors (KNN) algorithm demonstrated the highest accuracy, allowing for early identification of high-risk patients. Through KNN feature identification, we identified 23 predictors that significantly contribute to predicting COVID-19 mortality. The top five predictors are gender (female), intensive care unit (ICU) admission, alcohol drinking, smoking, and symptoms of headache and chills.This advancement holds great promise in enhancing healthcare outcomes and decision-making during the pandemic. By providing services and prioritizing patients based on the identified predictors, healthcare facilities and providers can improve the chances of survival for individuals. This model provides valuable insights that can guide healthcare professionals in allocating resources and delivering appropriate care to those at highest risk.