Abstract
BackgroundOA (osteoarthritis) is a common joint disease characterized by damage to the articular cartilage and affects the entire joint tissue, with its main manifestations being joint pain, stiffness, and limited movement.Currently,we know that OA is a complex process composed of inflammatory and metabolic factors.It is reported that the occurrence and development of OA is related to the change of tryptophan metabolism.Therefore, the study of tryptophan metabolism and OA related genes is hopeful to find a new therapeutic target for OA. MethodsDifferentially expressed genes (DEGs) in GSE55235 were gained via differential expression analysis (OA samples vs normal samples). The tryptophan metabolic related DEGs (TMR-DEGs) were obtained by overlapping tryptophan metabolism related genes (TMRGs) and DEGs. Further, biomarkers were screening via Least absolute shrinkage and selection operator (LASSO), naive bayes (NB) and supportvector machine-recursive feature elimination (SVM-RFE) algorithm to establish a diagnostic model. Afterward, Gene Set Enrichment Analysis (GSEA) and drug prediction were performed based on diagnostic biomarkers by multiple software and databases. Eventually, expression level of biomarker public databases was verified using real-time quantitative polymerase chain reaction (RT-qPCR). ResultsThree tryptophan metabolism related biomarkers (TDO2, AOX1 and SLC3A2) were identified in OA. GSEA analysis demonstrated that biomarkers were associated with the function of ‘FoxO signaling pathway’, ‘spliceosome’ and ‘ribosome’. There were seven drugs with therapeutic potential on TDO2 and AOX1. Ultimately, compared with normal group, expression of AOX1 and SLC3A2 in OA group remarkable lower. ConclusionOverall, three tryptophan metabolic related diagnostic biomarkers that associated with OA were obtained, which provided a original direction for the diagnosis and treatment of OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.