Abstract

In this work, we present a novel methodology for performing the supervised classification of time-ordered noisy data; we call this methodology Entropic Sparse Probabilistic Approximation with Markov regularization (eSPA-Markov). It is an extension of entropic learning methodologies, allowing the simultaneous learning of segmentation patterns, entropy-optimal feature space discretizations, and Bayesian classification rules. We prove the conditions for the existence and uniqueness of the learning problem solution and propose a one-shot numerical learning algorithm that-in the leading order-scales linearly in dimension. We show how this technique can be used for the computationally scalable identification of persistent (metastable) regime affiliations and regime switches from high-dimensional non-stationary and noisy time series, i.e., when the size of the data statistics is small compared to their dimensionality and when the noise variance is larger than the variance in the signal. We demonstrate its performance on a set of toy learning problems, comparing eSPA-Markov to state-of-the-art techniques, including deep learning and random forests. We show how this technique can be used for the analysis of noisy time series from DNA and RNA Nanopore sequencing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.