Intrinsically disordered regions (IDRs) are critical for cellular function yet often appear to lack sequence conservation when assessed by multiple sequence alignments. This raises the question of if and how function can be encoded and preserved in these regions despite massive sequence variation. To address this question, we have applied coarse-grained molecular dynamics simulations to investigate non-specific RNA binding of coronavirus nucleocapsid proteins. Coronavirus nucleocapsid proteins consist of multiple interspersed disordered and folded domains that bind RNA. Here, we focus on the first two domains of coronavirus nucleocapsid proteins: the disordered N-terminal domain (NTD) and the folded RNA binding domain (RBD). While the NTD is highly variable across evolution, the RBD is structurally conserved. This combination makes the NTD-RBD a convenient model system for exploring the interplay between an IDR adjacent to a folded domain and how changes in IDR sequence can influence molecular recognition of a partner. Our results reveal a surprising degree of sequence-specificity encoded by both the composition and the precise order of the amino acids in the NTD. The presence of an NTD can - depending on the sequence - either suppress or enhance RNA binding. Despite this sensitivity, large-scale variation in NTD sequences is possible while certain sequence features are retained. Consequently, a conformationally-conserved dynamic and disordered RNA:protein complex is found across nucleocapsid protein orthologs despite large-scale changes in both NTD sequence and RBD surface chemistry. Taken together, these insights shed light on the ability of disordered regions to preserve functional characteristics despite their sequence variability.