Abstract

The pancreas is a glandular organ with both endocrine and exocrine functions. Researchers have investigated the roles of several Rab proteins, which are major regulators of membrane trafficking, in pancreatic exocytosis of zymogen granules in exocrine cells, also known as acinar cells. However, detailed molecular mechanisms mediated by Rab proteins are not fully understood. RASEF/Rab45 is an atypical Rab GTPase that contains N-terminal EF-hand and coiled-coil domains, as well as a C-terminal Rab-GTPase domain. In this study, we investigated the in vivo role of RASEF in pancreatic acinar cells using RASEF-knockout (KO) mice. Morphological analyses revealed that pancreatic acinar cells in RASEF-KO mice had an increased number of zymogen granules and abnormal formations of organelles, such as the endoplasmic reticulum (ER) and lysosomes. Biochemical analyses showed that ER proteins were decreased, but digestive enzymes were increased in the RASEF-KO pancreas. Moreover, trypsinogen was activated and co-localized with the endo-lysosomal marker LAMP1 in RASEF-KO pancreas. Upon cerulein administration to induce acute pancreatitis, impaired enzyme release from the pancreas was observed in the serum of RASEF-KO mice. These findings suggest that RASEF likely regulates the formation and sorting of zymogen granules and secretion of digestive enzymes by pancreatic acinar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.