Abstract

HOXA9 transcription factor is expressed in hematopoietic stem cells and is involved in the regulation of their differentiation and maturation to various blood cells. HOXA9 is linked to various leukemia and is a marker for poor prognosis of acute myeloid leukemia (AML). This protein has a conserved DNA-binding homeodomain and a transactivation domain. We show that this N-terminal transactivation domain is intrinsically disordered and inhibits DNA-binding by the homeodomain. Using NMR spectroscopy and molecular dynamics simulation, we show that the hexapeptide 197AANWLH202 in the disordered region transiently occludes the DNA-binding interface. The hexapeptide also forms a rigid segment, as determined by NMR dynamics, in an otherwise flexible disordered region. Interestingly, this hexapeptide is known to mediate the interaction of HOXA9 and its TALE partner proteins, such as PBX1, and help in cooperative DNA binding. Mutation of tryptophan to alanine in the hexapeptide abrogates the DNA-binding auto-inhibition. We propose that the disordered transactivation region plays a dual role in the regulation of HOXA9 function. In the absence of TALE partners, it inhibits DNA binding, and in the presence of TALE partners it interacts with the TALE protein and facilitates the cooperative DNA binding by the HOX-TALE complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call