Quantitative analysis of microRNAs (miRNAs) in a noninvasive manner is of vital importance for disease diagnosis and prognosis evaluation. However, conventional strategies for realizing accurate, simple, and sensitive detection of target molecules are still a challenge, especially for miRNAs due to their low abundance and susceptibility in the complex biological environment. Here, a novel surface-enhanced Raman scattering (SERS) strategy was established for quantitative detection and monitoring of miRNA-21-5p (miR-21-5p) in living cells and in vivo cerebrospinal fluid (CSF) by applying hairpin DNA (hpDNA)-conjugated gold nanostars (GNSs) SERS probes combined with acupuncture-based technology. This strategy enabled ultrasensitive exploration toward miR-21-5p in a wide range from 1 fM to 100 pM in cell lysates. Moreover, SERS analysis facilitated the detection and long-term monitoring for in vivo miR-21-5p noninvasively. This developed strategy promises to offer a powerful method for the analysis of multiple biomolecules in single cells and living bodies.
Read full abstract