Abstract

The optoelectronic properties of gallium arsenide (GaAs) hold great promise in biosensing applications, currently being held back by the lack of methodologies reporting the spatially selective functionalisation of this material with multiple biomolecules. Here, we exploit the use of a photoreactive crosslinker - a diazirine derivative - for spatially selective covalent immobilisation of multiple bioreceptors on the GaAs surface. As a proof of principle we show the immobilisation of two proteins: neutravidin and endosulfine alpha protein. X-ray photoelectron spectroscopy results showed the presence of the biomolecules on the GaAs regions selectively exposed to ultraviolet light. The approach presented here is applicable to the covalent attachment of other biomolecules, paving the way for using GaAs as a platform for multiplexed biosensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.