Talent resources are a primary resource and an important driving force for economic and social development. At present, researchers have conducted studies on talent introduction, but there is a paucity of research work on the stability of talent introduction. This paper presents the first study on talent stability in higher education, aiming to design an intelligent prediction model for talent stability in higher education using a kernel extreme learning machine (KELM) and proposing a differential evolution crisscross whale optimization algorithm (DECCWOA) for optimizing the model parameters. By introducing the crossover operator, the exchange of information regarding individuals is facilitated and the problem of dimensional lag is improved. Differential evolution operation is performed in a certain period of time to perturb the population by using the differences in individuals to ensure the diversity of the population. Furthermore, 35 benchmark functions of 23 baseline functions and CEC2014 were selected for comparison experiments in order to demonstrate the optimization performance of the DECCWOA. It is shown that the DECCWOA can achieve high accuracy and fast convergence in solving both unimodal and multimodal functions. In addition, the DECCWOA is combined with KELM and feature selection (DECCWOA-KELM-FS) to achieve efficient talent stability intelligence prediction for universities or colleges in Wenzhou. The results show that the performance of the proposed model outperforms other comparative algorithms. This study proposes a DECCWOA optimizer and constructs an intelligent prediction of talent stability system. The designed system can be used as a reliable method of predicting talent mobility in higher education.