Abstract

Optimization algorithms play a critical role in electromagnetic device designs due to the ever-increasing technological and economical competition. Although evolutionary algorithm-based methods have successfully been applied to different design problems, these methods exhibit deficiencies when solving complex problems with multimodal and discontinuous objective functions, which is quite common in electromagnetic device optimization designs. In this paper, a hybrid multi-objective optimization algorithm based on a non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective particle swarm optimization method (MOPSO) is proposed. In order to enhance the convergence and diversity performance of the algorithm, a new population update mechanism of MOPSO is introduced. Moreover, an adaptive operator involving crossover and mutation is presented to achieve a better balance between global and local searches. The performance of the hybrid algorithm is validated using standard test functions and the multi-objective design of a superconducting magnetic energy storage (SMES) device. Numerical results demonstrate the effectiveness and superiority of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call