Abstract

Path planning is a complicated optimization problem that is crucial for the safe flight of unmanned aerial vehicles (UAVs). Especially in the scenarios involving multiple UAVs, this problem is highly challenging due to the constraints of complex environments, various tasks and inherent UAV maneuverability. In this paper, a cooperative path planning model for multiple UAVs is presented. In addition to common limitations such as the path length minimization, UAV maneuverability limitation and collision avoidance, the communication requirements between UAVs and the impact of obstacles in the flight environment on the quality of communication are also taken into account in the presented path planning model. On this basis, the corresponding objective function is designed. Then, an improved particle swarm optimization (PSO) algorithm is proposed to solve the above path planning problem. Utilizing the ideas of the dynamic multi-swarm PSO (DMSPSO) algorithm and the comprehensive learning PSO (CLPSO) algorithm, the proposed algorithm, denoted as CL-DMSPSO, further improves the performance of both algorithms. The effectiveness and superiority of the novel CL-DMSPSO algorithm is verified on benchmark functions, especially for complex multimodal functions. Finally, we present an effective path planning method using CL-DMSPSO to generate optimized flyable paths for multiple UAVs. And simulation and comparison results on the designed scenario indicate the proposed UAV path planning method can efficiently plan high-quality paths for UAVs and demonstrate the advantages of the proposed CL-DMSPSO algorithm compared with other PSO algorithms in UAV path planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.