With the continuous development of global navigation satellite systems (GNSS) modernization, the code bias presented in the form of observation-specific biases (OSB) is more flexible and effective when processing modern multi-frequency and multi-GNSS signals, and therefore widely accepted by the GNSS community. However, the newly reported signal distortion biases (SDB) are ignored in the existing OSB estimation methods, which may affect the reliability of the final OSB estimation. In addition, the existing studies about SDB estimation are independent of OSB estimation, and thus a set of SDB products is generated independent of OSB products, which undoubtedly brings more complicated correction operations to GNSS users. In view of it, this study proposes an approach to code OSB estimation for multi-frequency and multi-GNSS arbitrary signals by reparameterization, which considers the SDB parameter. The aim of this study is to generate a set of code OSB products that take into account SDB parameters for the GNSS users to use. Due to considering the influence of SDB on raw code observations, the OSB estimation obtained by the proposed method is related to specific satellite-receiver pairs, which makes it different from the traditional OSB estimation methods. To achieve this, an extended model for multi-frequency and multi-GNSS arbitrary signal is first established based on the undifferenced and uncombined model, in which the SDB parameter is taken into account by re-parameterization. Based on the proposed model, three types of code bias that contain the OSB information can be obtained for the subsequent OSB estimation. Then, the three types of code bias in the first step are used as virtual observations for multi-frequency and multi-GNSS arbitrary signal OSB estimation through a two-step method. The proposed method is validated with a whole month of real measured data from 418 stations in MGEX and GA CORS to generate OSBs for GPS, GLONASS, and Galileo. The comparison between the estimated OSBs and the OSB products from CAS indicates the reliability of the proposed method. Besides, all types of OSB for four receiver groups are generated based on the proposed method to analyze the relationship between OSB and receiver groups. Results indicate that the estimated OSBs are related to receiver groups, and specific differences exist between different satellites and GNSS signals. It also proves that the OSB estimation is biased by the inconsistencies of the deviation in different receiver groups, which is more obvious for GLONASS.
Read full abstract