Multi-modality based classification methods are superior to the single modality based approaches for the automatic diagnosis of the Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, most of the multi-modality based methods usually ignore the structure information of data and simply squeeze them to pairwise relationships. In real-world applications, the relationships among subjects are much more complex than pairwise, and the high-order structure containing more discriminative information will be intuitively beneficial to our learning tasks. In light of this, a hypergraph based multi-task feature selection method for AD/MCI classification is proposed in this paper. Specifically, we first perform feature selection on each modality as a single task and incorporate group-sparsity regularizer to jointly select common features across multiple modalities. Then, we introduce a hypergraph based regularization term for the standard multi-task feature selection to model the high-order structure relationship among subjects. Finally, a multi-kernel support vector machine is adopted to fuse the features selected from different modalities for the final classification. The experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) demonstrate that our proposed method achieves better classification performance than the start-of-art multi-modality based methods.
Read full abstract