Abstract
In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification (SSI) and multi-kernel support vector machine (MSVM) is proposed. First, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine (SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.