Abstract

In order to realize the accurate diagnosis of the solenoid valve fault and the accurate identification of the fault type, a fault diagnosis method of solenoid valve based on MKSVM (Multi-Kernel Support Vector Machine) is proposed. Firstly, through the analysis of support vector machine theory, a multiple-kernel learning support vector machine model is built, and the genetic algorithm is used to optimize the multiple-kernel learning weight coefficient and kernel parameter configuration. Then, the current signal of the solenoid valve driving terminal under the six common failure modes of the solenoid valve is obtained experimentally, and the characteristic information is extracted by EMD (Empirical Mode Decomposition) based on the current change rate. Finally, the multi-kernel learning SVM model was used to diagnose the state of the solenoid valve corresponding to each data, and its accuracy rate reached 98.9%. The comparison with the single-core diagnosis method shows that the method can accurately detect the solenoid valve fault Diagnosis, for similar studies with reference value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.