This study addresses the inadequacy of the current quantitative calculation method for decision-maker credibility in hesitant fuzzy multi-attribute decision-making, where credibility is considered. To overcome this limitation, a novel quantitative calculation method for decision-maker credibility is proposed based on the principles of basic uncertainty information theory under a hesitant fuzzy environment. Furthermore, a credible-based hesitant fuzzy multi-attribute decision model is developed. Initially, the paper introduces the concept of a basic uncertainty hesitant fuzzy set by combining basic uncertainty information theory with hesitant fuzzy set theory, thereby enhancing the understanding of basic uncertainty information theory within the realm of non-interval fuzzy information. Building on this foundation, the method for determining the hesitant degree of each element in the basic uncertainty hesitant fuzzy set is provided, followed by the proposed quantitative calculation method for decision-maker’s credibility under the hesitant fuzzy environment, which addresses the lack of a quantitative approach for assessing expert credibility under such circumstances. Subsequently, an attribute weight assignment method is introduced, considering the decision-maker’s credibility, leading to the formulation of a basic uncertainty hesitant fuzzy multi-attribute decision model based on credibility. This model enhances existing hesitant fuzzy multi-attribute decision-making methods that take credibility into account. To validate the proposed approach, the study applies it to the selection of new energy vehicle battery suppliers. The results of the analysis using actual data and sensitivity analysis demonstrate that decision-maker credibility can be quantitatively determined using the proposed method. Additionally, the basic uncertainty hesitant fuzzy multi-attribute decision-making model based on credibility effectively aids in supplier selection. The feasibility and stability of this method are verified through the examination of risk appetite coefficient and hesitancy coefficient.