The transient receptor potential vanilloid subtype 1 (TRPV1) channel is considered to play an important regulatory role in the process of pain. The purpose of this study is to observe the change characteristics of TRPV1 channel in MSU-induced gouty arthritis and to find a new target for clinical treatment of gout pain. Acute gouty arthritis was induced by injection of monosodium urate (MSU) crystals into the ankle joint of mice. The swelling degree was evaluated by measuring the circumference of the ankle joint. Mechanical hyperalgesia was conducted using the electronic von Frey. Calcium fluorescence and TRPV1 current were recorded by applying laser scanning confocal microscope and patch clamp in dorsal root ganglion (DRG) neurons, respectively. MSU treatment resulted in significant inflammatory response and mechanical hyperalgesia. The peak swelling degree appeared at 12h, and the minimum pain threshold appeared at 8h after MSU treatment. The fluorescence intensity of capsaicin-induced calcium response and TRPV1 current were increased in DRG cells from MSU-treated mice. The number of cells that increased calcium response after MSU treatment was mainly distributed in small-diameter DRG cells. However, the action potential was not significantly changed in small-diameter DRG cells after MSU treatment. These findings identified an important role of TRPV1 in mediating mechanical hyperalgesia in MSU-induced gouty arthritis and further suggest that TRPV1 can be regarded as a potential new target for the clinical treatment of gouty arthritis.
Read full abstract