This paper focuses on a geometric structure defined by a system of closed exterior differential forms and develops a new approach to deformation problems of geometric structures. We obtain a criterion for unobstructed deformations from a cohomological point of view (Theorem 1.7). Further we show that under a cohomological condition, the moduli space of the geometric structures becomes a smooth manifold of finite dimension (Theorem 1.8). We apply our approach to the geometric structures such as Calabi–Yau, HyperKähler, G2and Spin(7) structures and then obtain a unified construction of smooth moduli spaces of these four geometric structures. We generalize the Moser's stability theorem to provide a direct proof of the local Torelli type theorem in these four geometric structures (Theorem 1.10).