Abstract

An estimate on the number of distinct relative periodic orbits around a stable relative equilibrium in a Hamiltonian system with continuous symmetry is given. This result constitutes a generalization to the Hamiltonian symmetric framework of a classical result by Weinstein and Moser on the existence of periodic orbits in the energy levels surrounding a stable equilibrium. The estimate obtained is very precise in the sense that it provides a lower bound for the number of relative periodic orbits at each prescribed energy and momentum values neighbouring the stable relative equilibrium in question and with any prefixed (spatio-temporal) isotropy subgroup. Moreover, it is easily computable in particular examples. It is interesting to see how, in our result, the existence of non-trivial relative periodic orbits requires (generic) conditions on the higher-order terms of the Taylor expansion of the Hamiltonian function, in contrast with the purely quadratic requirements of the Weinstein–Moser theorem, which emphasizes the highly nonlinear character of the relatively periodic dynamical objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.