Abstract

We present analogies between Diophantine conditions appearing in the theory of Small Divisors and classical Transcendental Number Theory. Let K be a number field. Using Bertrand's postulate, we give a simple proof that $e$ is transcendental over Liouville fields K$(\theta)$ where $\theta $ is a Liouville number with explicit very good rational approximations. The result extends to any Liouville field K$(\Theta )$ generated by a family $\Theta$ of Liouville numbers satisfying a Diophantine condition (the transcendence degree can be uncountable). This Diophantine condition is similar to the one appearing in Moser's theorem of simultanneous linearization of commuting holomorphic germs.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.