Distal re-entry tears play a significant role in false lumen (FL) thrombosis, which will strongly affect the postoperative long-term survival of patients with type B aortic dissection (TBAD) after thoracic endovascular aortic repair (TEVAR). This study aimed to investigate the influence of a peculiar morphological parameter of the residual re-entry tears in TBAD patients after TEVAR on long-term FL thrombosis using the computational fluid dynamics. Ideal population-based three-dimensional models of post-operative TBAD were established. Numerical simulation was performed to investigate the hemodynamic differences caused by different tear features, including the tear count, the maximum distance between tears, and the tear area. Although the low relative residence time (RRT) area did not change significantly when the tear distance was fixed, the area of oscillatory shear index (OSI) > 0.45 and endothelial cell activation potential (ECAP) > 1.5 decreased significantly with the tear count and area increased and a dramatic increase in blood flow into the FL was also observed. When tear count and total area were fixed, for each 10-mm increase in the maximum distance between tears, the area of low RRT in the FL increased significantly, while the average pressure difference increased by 10.85%. The different morphology of the re-entry tears had different effects on the thrombosis-related hemodynamic parameters in FL following TEVAR. and the number of re-entry tears was most crucial to the potential thrombosis in the post-TEVAR FL of TBAD patients.
Read full abstract