Aroclor 1254 is a mixture of polychlorinated biphenyls that are reported to disrupt thyroid hormone homeostasis, yet little is known on its effect on thyroid gland microarchitecture. Lycopene is a commonly used potent antioxidant. This study is a biochemical, histological, and immunohistochemical assessment of the effect of Aroclor 1254 on the morphology, proliferation, and angiogenesis of the thyroid gland in rat and to evaluate the possible ameliorating role of lycopene. Twenty-four adult male albino rats were divided into 4 groups; Control, lycopene-treated (4 mg/kg/day orally for 30 days), Aroclor 1254-treated (2 mg/kg/day intraperitoneally for 30 days), and lycopene & Aroclor 1254-treated group. Serum thyroid hormones, thyroid-stimulating hormone (TSH), and tissue malondialdehyde (MDA) were quantified. Thyroid specimens were processed for histological staining with hematoxylin and eosin, periodic acid-Schiff, and Mallory’s trichrome stains as well as immunohistochemical staining for detection of calcitonin, Ki67, and VEGF. In this study, Aroclor 1254-treated animals recorded a significant decline in both serum T3 and T4 coupled with a significant elevation in both TSH and tissue MDA. Histological sections showed small irregular follicles with the formation of hyperplastic and micro follicles. Some follicular and parafollicular cells depicted nuclear and cytoplasmic alterations associating with scanty or absent colloid in addition to signs of inflammation and fibrosis. A significant upregulation in the immunohistochemical expression of calcitonin, Ki67, and VEGF was recorded. Lycopene co-treatment successfully reinstated the values of most studied parameters and retrieved a near-control thyroid morphology. In conclusion, Aroclor 1254 impacted the thyroid hormone homeostasis, morphology, proliferation, and angiogenesis of the thyroid gland in rat, while lycopene efficiently ameliorated these adverse effects.
Read full abstract