Abstract
Thiazole-Zn is a systemic fungicide synthesized and developed in China that has been used for the prevention and treatment of bacterial and fungal diseases on fruits and vegetables. Thiazole-Zn is a new thyroid disruptor chemical. The purpose of this study was to clarify the thyroid-disrupting property of thiazole-Zn and the mechanism responsible for thyroid hormone (TH) biosynthesis inhibition in male rats induced by thiazole-Zn. First, the effects of different thiazole-Zn doses and exposure times on the thyroid weights, thyroid morphology and serum hormone levels of rats were investigated. The results showed that thiazole-Zn increased thyroid weights and serum thyroid-stimulating hormone (TSH) levels and induced thyroid cell hypertrophy and hyperplasia in a dose-related and time-related manner. Furthermore, measurement of thyroid radioiodine uptake in vivo in rats confirmed that thiazole-Zn inhibited active iodide uptake into the thyroid, which reduced circulating levels of serum T3 and T4. Decreases in circulating THs resulted in a compensatory increase in serum TSH levels through a negative feedback system. Subsequently, sustained excessive stimulation of the thyroid gland by TSH led to thyroid follicular cell hypertrophy and hyperplasia. In addition, thiazole-Zn increased sodium/iodide symporter (NIS) expression in the rat thyroid, and the increased NIS expression promoted and restored iodide uptake into the thyroids of rats. The risk of iodine intake inhibition by thiazole-Zn to humans, especially susceptible individuals, such as children and pregnant women, warrants additional attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.